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Abstract

In electrodynamics courses and textbooks, the ptiegeof plane electromag-
netic waves in both conducting and non-conductireglim are typically studied
from the point of view of the prototype case of anochromatic plane wave. In
this note an approach is suggested that starts finone general considerations
and better exploits the independence of the Maxagglations.

1. Introduction

Plane electromagnetic (e/m) waves constitute aifgignt type of solution of the
time-dependent Maxwell equations. A standard edealt approach in courses and
textbooks (at both the intermediate [1-4] and ttheaaced [5,6] level; see also [7,8])
Is to examine the prototype case of a monochronpédite wave in both a conducting
and a non-conducting medium.

In this note a more general approach to ttublpm is described that makes
minimal initial assumptions regarding the specifimctional forms of the plane
waves representing the electric and the magnedid. fThe only assumption one does
need to make from the outset is that both fieltkc{gc and magnetic) are expressible
in integral form as linear superpositions of monoahatic waves. In particular, it is
not even necessary gopriori require that the plane waves representing thefitas
travel in the same direction.

In Section 2 we review the case of a monaolatec plane e/m wave in empty
space. A more general (non-monochromatic) treatioktite plane-wave propagation
problem in empty space is then described in Seln Sec. 4 this general approach is
extended to plane-wave solutions in the case ahnaucting medium; an interesting
difference from the monochromatic case is noted.

2. The monochromatic-wave description for empty sgce

In empty space, where no charges or currents (whétde or bound) exist, thdax-
well equations are written (in S.I. units)

(@) V-E=0 (0 ﬁsz—%
oF M)
(b) V-B=0 (d) ﬁxézgoﬂoa

where E and B are the electric and the magnetic field, respebtivBy applying the
identities
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Vx(VxE)=V(V-E)-V’E,
Vx(VxB)=V(V-B)-V?B,

we obtain separate wave equationsfoand B :

,= 1 8°E
V2E - =0 2)
vzé—iazB:o (3)
c® ot?
where
e 1

e (4)

We try monochromatic plane-wave solutiong)fand (3), of angular frequency
o, propagating in the direction of the wave vedtar

E(r,t)=E,exp{i (k-F—wt)} (a)

B B . 5)
B(F,t)=Byexp{i (k-T-wt)} (b
where E, and B, are constant complex amplitudes, and where
a) —
¢ (k=lk]) (6)

The general solutions (5) do raopriori represent an e/m field. To find the extra
constraints required, we must substitute Eqs.nt®) the Maxwell system (1). By tak-

ing into account thaVe'*" = ik &7, thediv equations (a) and (1) yield
k-E=0 (@) k- B=0 (b 7)
while therot equations (&) and (H) give

KkxE=w B (3 T«B:-?E(b (8)

2

Now, we notice that the four equations (7)-48 not form an independent set
since (b) and (&) can be reproduced by usingafand (&). Indeed, taking the dot

product of (&) with kK we get (B), while taking the cross product ofaj8with k
and using (@) and (6), we find (B).

So, from 4 independent Maxwell equations viraimed only 2 independent
pieces of information. This happened because wa” “bair trial solutions (5) with
more information than necessary, in anticipatiorresfults that followa posteriori
from Maxwell’'s equations. Thus, we assumed from déset that the two waves
(electric and magnetic) have similar simple funatibforms and propagate in the
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same direction. By relaxing these initial assumpjoour analysis acquires a richer
and much more interesting structure.

3. A more general approach for empty space

Let us assume, more generally, that the fididand B represent plane waves propa-
gating in empty space in the directions of the uaitorsz and o, respectively:

E(F,t)=F(-F—ct), B(f,t)=G (& -F—ct) (9)

Furthermore, assume that the functidhsand G can be expressed as linear combi-
nations of monochromatic plane waves of the forin f(r continuously varying val-
ues ofk andw, wherew=ck, according to (6). Theft and B can be written in Fou-
rier-integral form, as follows:

E:J‘ Eo(k) é’k(ff—ct) dk

10
B:J- E)(k) ék(é'-rfct) dk ( )

In general, the integration varialitas assumed to run from O teo+ For notational
economy, the limits of integration with respeckiwill not be displayed explicitly.
By setting

u=rz-r-ct, v=o-T-ct (11)
we write
E(u)=[ B (K & d w2
é(v)zj B (K & dk
We note that
veki = jkrdkt, vev= i & (13)

By using (12) and (13) we find that
?-E:jikf-éo(k)ék“dk, Vézjik&-éo(k)ék"dk,
V x E:jikfx Ey(K) &Y dk Vx B:jikc}x B, (K) &< dk.
Moreover, we have that

8E_ . = iku aB_ . S kv
E_-ijo(k)é dk, E_-juwso(k)é dk

where, as alwaysy=ck.
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The two Gauss’ lawsdland (D) yield
jkf- E,(k) é“ dk=0 and jkc}- B,(K) €“ dk=0,

respectively. In order that these relations bedvalentically for allu and allv, re-
spectively, we must have

7-Ey(K)=0 and &-By(k)=0, for allk (14)

From Faraday's law @ and the Ampéere-Maxwell law ¢} we obtain two more in-
tegral equations:

jkfxéo(k) gl dk:ja)”@( X & d (15)
[kex By(K) ékakz—jC—“; (k& d (16)

where we have taken into account Eqg. (4).
Taking the cross product of (15) wish and using (16), we find the integral rela-
tion

[KI(6-Bp) #—(6-7) E)] & dk=—] KT & d.
This is true for all if
(6-E)i-(6-0)E=-E = (6-7-D)E= (6" B)7.

Given that, by (14)E0 andz are mutually perpendicular, the above relation aalg

be valid if -7 =1 and - E, =0. This, in turn, can only be satisfieddf=7. The
same conclusion is reached by taking the crossugtoaf (16) with7 and by using
(15) as well as the fact thﬁb is normal toc . From (11) we then have that

u=v=r-T—ct

so that relations (12) become

E(F,1) = j E, (k) €% dk= j B(p BET ¢

17
é(r,t)zjéo(k) ék“dkzj'ﬁ%(& K@Er-ch g ")
Equations (14) are now rewritten as
7-E,(k)=0 and 7-B,(k)=0, for allk (18)

Furthermore, in order that (15) and (16) (witland 7 in place ofv and &, respec-
tively) be identically valid for alu, we must have
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kixEy(W=wB(K < 7x B(R= cB( k (19)
and
x By =—5 BB = 7x By e=—% Bk (20)

for all k, wherek=w/c. Notice, however, that (19) and (20) are not irehejent equa-
tions, since (20) is essentially the cross prodfi¢19) with 7 .

In summary, the general plane-wave solutitmghe Maxwell system (1) are
given by relations (17) with the additional constta (18) and (19). This is, of
course, a well-known result, derived here by stgrtvith more general assumptions
and by best exploiting the independence [9] of\Mlaxwell equations.

Let us summarize our main findings:

1. The fieldsE and B are plane waves traveling in the same directiefindd
by the unit vector: ; these fields satisfy the Maxwell equations in gngpace.

2. The e/m wav€E, B) is atransversavave. Indeed, from equations (17) and the
orthogonality relations (18) it follows that

7-E=0 and 7-B= C (21)

3. The fieldsE and B are mutually perpendicular. Moreover, € B,7) define

a right-handed rectangular system. Indeed, by aragtplying (17) with 7 and by
using (19) and (20), we find:

FxE=cB, 7xB-_1E (22)
C

4. Takingeal valuesof (21) and (22), we have:

A

7-ReE=0, 7- RB= ( and 7xReE=cReB (23)

The magnitude of the last vector equation in (28¢ga relation between the instan-
taneous values of the electric and the magnett: fie

|ReE | ¢ |ReB 42
The above results for empty space can bend&tkin a straightforward way to the
case of dinear, non-conducting, non-dispersingedium upon replacement gf and
o With & andu, respectively [3]. The (frequency-independent)esbef propagation
of the plane e/m wave in this casesis1/(gu)*>.

4. The case of a conducting medium

The Maxwell equations for a conducting medium afidwctivity c may be written as
follows [1,3]:
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(a) V-E=0 © ﬁxéz_%
. (25)
- - = oE
(b) V-B=0 (d) V x B:IIJO' E+€,Lla
By using the vector identities
Vx(VxE)=V(V-E)-VZ?E,
Vx(VxB)=V(V-B)-V?B,
the relations (25) lead to timeodified wave equations
= 0°E oE
V’E - ¢ —uo—=0 26
HoF THO (26)
. 0°B 0B
VB -¢ - —=0 27
HoT T HO (27)

Guided by our monochromatic-wave approadhegoroblem in [7,8], we now try
a more general, integral form of solution of theabwave equations:

E(r,t):jéo(k) g ST dkir-en dk:j B( kexp{ (ik ¥-"F o)t d

_ . N . (28)
B(f,t):jBo(k) g ST gkiT-on dkzj' B( kexp{ (ik ¥ "¢ dt dl
wheres is a real parameter related to the conductivitthef medium. As in the vac-
uum case, the unit vectar indicates the direction of propagation of the wa\etice

that we have assumed from the outset that both svavelectric and magnetic —
propagate in the same direction, in view of thd that our results must agree with

those for a non-conducting medium (in particular,the vacuum) upon settirsg0.
It is convenient to set

exp{(k—-s)7-T—iwtj=A[ 1) (29)
Then, Eqg. (28) takes on the form

E(7,1) :jEO(k) A(T, t) dk

- - (30)
B(r,t)zjso(k) AT, t) dk
The following relations can be easily proven:
VA(F,t) = (ik —s) 7 A(T, t) (31)
V2A(T,t) = (s* — k- 2isk) AT, 1) (32)
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Moreover,

2
%A(F,t) —_iwA(Ft) and %A(F,t) — A1),

From (26) we get
I[(SZ— k2t spuw®+ i(uow-2sK] BE(§ A1) dkeO

[a similar integral relation is found from (27)]hiB will be identically satisfied for all
r andt if

s>~ k*+euw®=0 and pow- 2sk= ( (33)

By using relations (33)y ands can be expressed as functionk,0és required in or-
der that the integral relations (28) make sensdicBloin particular, that, by the sec-
ond relation (33)s=0 if 6=0 (non-conducting medium). Then, by the first relat
wlk=1/(e1)*?, which is the familiar expression for the speegmipagation of an e/m
wave in a non-conducting medium [3].

From the two Gauss’ laws @5%and (2%) we get the corresponding integral rela-
tions

J(k=9)7-B(K AT, 9 dk=0,
j(ik—s)f-a)(k) AT, 1Y) dk=0.
These will be identically satisfied for afl andt if
7-Ey(k)=0 and 7-B,(k)=0, for allk (34)
From (2%) and (2%l) we find

[(k=9)7xEy(K AT, 9 dk=[ wB(B A1) db
and

[(k=9)7xB(K AT, 9 dk= [ (uo - buw) B(R ATt ) dk,
respectively. To satisfy these for @llandt, we require that

(k+is)7x By(R = B(R (35)

and

(k+i8)7x By(K) = ~(suw+ o) By(K (36)

Note, however, that (36) is not an independent Bgjuaince it can be reproduced by
cross-multiplying (35) withr and by taking into account Egs. (33) and (34).
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We note the following:
1. From (30) and (34) we have that

7-E=0 and 7-B= ( (37)

or, in real form,7-ReE = 0 and7- R&= . This means that botReE and ReB

are normal to the direction of propagation of treve:
2. From (30) and (35) we get

A= o o -
erzijO(k)A(r,t)dk (38)

The integral on the right-hand side of (38) is, erafly, not a vector parallel t& .
Now, in the limit of negligible conductivitys€0) the relations (33) give=0 and
wlk=1/(eu)"%. The ratio w/k represents the speed of propagatiorin the non-
conducting medium, for the frequeney If the medium isnon-dispersivethe speed
v=wlk is constant, independent of frequency. Then &). (withs=0) becomes

FxE=0[B(k AT, dk=0 B

and, in real form, it reads x ReE =v ReB. Geometrically, this means that the
(ReE, ReB 7 ' define a right-handed rectangular system.

3. As shown in [7,8], th& and B are always mutually perpendicular imeno-
chromatice/m wave of definite frequeney, traveling in a conducting medium. Such
a wave is represented in real form by the equations

E(F,t)=E,e 5 cos(kF- tT-wt+a),
2 2 o
B(r.t)= VK4S B e cos(6- T-o t+ B )
w
where Eo is a real vector and where tgng¢)=s/k. This perpendicularity betweeh
and B ceases to exist, however, in a non-monochromatiewef the form (28).
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